

Growth is natural with us

Alltech. 40+ years of consistent growth.

Headquartered in Kentucky, with 95 production facilities and present in over 120 countries.

We are a global leader in biotechnology, animal nutrition and nutritional solutions for agricultural performance.

Our mission is to improve the health and performance of people, animals and plants through scientific innovation.

Agronomic division providing an **innovative biotechnology range** of soil health and plant nutrition, performance and protection products.

Proven effective, natural-based alternatives to chemicals

Technology derived from microbial fermentation

Curiosity is the seed of discovery

Nutrigenomics

Improving crop quality and yield

#MaximizeThePotentialOfYourCrop

Nutrigenomics

Two genomic approaches to understarnd the mode of action oa product

Nutrigenomics

Attech

P-1629 EL-24003 Study of Mode of Action of CROP-SET

GENES INVOLVED IN PLANT DEVELOPMENT AND YIELD

GENES INVOLVED IN DEVELOPMENT AND NUTRIENT UPTAKE

ELONGATED HYPOCOTYL 5 (HY5):

Transcription factor AND master regulator of light-mediated responses.

HY5 binds to the promoter of c. 3000 genes, thereby regulating various physiological and biological processes, including photomorphogenesis, flavonoid biosynthesis, root development, response to abiotic stress and nutrient homeostasis.

Coordinates stem and root growth in response to light.

Regulates the transport of photoassimilates from the stem to sink tissues by activating the expression of different genes

HY5: a key regulator for light-mediated nutrient uptake and utilization by plants

Samriti Mankotia, Pooja Jakhar and Santosh B. Satbhai 💿

Department of Hickogical Sciences, Indian Institute of Science Education and Research (USER), Michali, 545 Nager, Paejab, 140906, India

Received: 22 November 2023 Accepted: 17 December 2023

Email: ssatbhai@lisennohali.ac.in

Author for correspondence:

Santosh R. Sathha

Mtech

NUTRIGENOMICS

Why HY5?

The gene **ELONGATED HYPOCOTYL 5** regulates growth mechanisms in the plant. **HY5** directly activates the expression of genes involved in both nutrient uptake and utilization in the plant, including nitrogen, phosphorus, iron, sulfur and copper.

NUTRIGENOMICS. Gene selection

Activation of **HY5**

Regulates the assimilation of carbon in the stem.

Is involved in the regulation of the plant's photosynthetic capacity.

Regulates genes involved in chlorophyll synthesis, stomata development, and photosynthesis.

Coordinates stem and root growth in response to light.

Regulates the transport of photo-assimilates from the stem to the sink tissues, activating the expression of different genes.

GENES INVOLVED IN DEVELOPMENT

Reduced height-B1b (Rht-B1b) genes encode DELLA proteins, transcriptional regulators that act to repress gibberellic signaling.

This class of plant hormones has a well-characterized role in controlling **stem elongation and plant growth**

It has been observed that a reduction in the expression of the genes that encode DELLA proteins improves the vegetative development of the wheat crop.

CROP SET.

GENES INVOLVED IN AUXIN BIOSYNTHETIC PATHWAY

TRYPTOPHAN AMINOTRANSFERASE RELATED (TaTAR2.1) genes that function in the tryptophan-dependent pathway of auxin biosynthesis.

Overexpressing TaTAR2.1-3A in Arabidopsis elevated auxin accumulation in the primary root tip, LR tip, LR primordia, and cotyledon and hypocotyl and increased primary root length, visible LR number, and shoot fresh weight under high- and low-N conditions.

The Auxin Biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A Increases Grain Yield of Wheat¹

Controlling the major auxin biosynthetic pathway to manipulate auxin content could be a target for genetic engineering of crops with desired traits

GENES INVOLVED IN AUXIN BIOSYNTHETIC PATHWAY

ARF4 (Auxin response factor 4):

Transcription repressor factor that participate in the auxin pathway, and affect auxin-responsive gene expression. It has been demonstrated its role in **plant growth and development.**

TaARF4 overexpression led to higher free indole-3-acetic acid (IAA) content. The high free IAA that inhibits apical dominance also reduced primary root length and plant height.

GENES INVOLVED COLD STRESS TOLERANCE

ICE factors are positive regulators of the low-temperature signaling pathway.

ICE factors overexpression can enhance the tolerance of plants to low temperatures.

ICE, CBF and COR are cold tolerance-responding functional and regulatory genes that participate directly or indirectly in defense against low temperature. The ICE-CBF-COR pathway is a universal pathway related to cold stress tolerance in crop sper

Attech

Similar results with GRAIN-SET on cereals

The trial was done on wheat, with **GRAIN** SET[®] being applied at late-tillering stage. 7 different genes knowned to be involved in key metabolic processes were analysed:

- HY5: a growth promoting gene, regulating photosynthesis, stem and root growth, carbon absorption and transport.
- NR2 and GS2: invovled in Nitrogen assimilation (NR2) and transport (GS2)
- **DELLA** and **ARF4**: involved in the **regulation of hormones response and balance of the growth**, by repressing responses to gibberelins (for DELLA) and regulation the concentration of auxin (for ARF4)
- PAL and PR2: involved in growth and response to stress, with PAL being key to the salicilic acid pathway and inducing resistance, and PR2 being pathogen-related.

Based on plant nutrigenomic research

GRAIN

SET'

Increase the quality parameters such as size, density and weight

of the grain.

Improves uniformity and precocity

of the crop.

and soil water.

Facilitates assimilation

of nutrients

Organic farming according to Regulation (EU) No. 2018/848

Biostimulant Nutrigenomics for your crops

GRAIN SET[®] is a biostimulant that activates different metabolic processes of the plant, reducing situations of environmental stress.

includes micronutrients and **GRAIN** SET® fermentation metabolites that allow the plant to concentrate more energy on root growth, allowing better root development and taking advantage of nutrients and soil resources.

GENES INVOLVED IN STRESS RESPONSES

GENES THAT PARTICIPATE REDUCING VIABILITY AND VIRULENCE OF PATHOGENS

RIBONUCLEASE (PR10) properties and roles in plant defense

Ribonucleases—degrade RNA

Programmed cell death during hypersensitivity reaction

Antibacterial, antifungal, antinematode and antivirus activity

Salt and cold stress tolerance

GENES INVOLVED IN STRESS AND SECONDARY METABOLITES

Phenylalanine ammonia-lyase (PAL) properties and roles in plant defense

Plant growth and stress response

Induces the synthesis of salicylic acid (SA)

Component of many compounds essential for the structure, reproduction, defense and communication of plants.

P-1629 EL-24003 Study of MoA of SOIL SET in WHEAT

GENES INVOLVED IN PLANT DEVELOPMENT AND YIELD

GENES INVOLVED DEVELOPMENT AND NUTRIENT UPTAKE

ELONGATED HYPOCOTYL 5 (HY5):

Transcription factor master regulator of light-mediated responses. HY5 binds to the promoter of c. 3000 genes, thereby regulating various physiological and biological processes, including photomorphogenesis, flavonoid biosynthesis, root development, response to abiotic stress and nutrient homeostasis.

HY5 directly activates the expression of genes involved in nutrient uptake and utilization, including several nitrogen, iron, sulphur, phosphorus and copper uptake and assimilation-related genes.

GENES INVOLVED DEVELOPMENT

DELLA proteins (Rht-1B):

Reduced height-B1b (Rht-B1b) genes encode DELLA proteins, transcriptional regulators that act to repress gibberellic signaling. This class of plant hormones has a well-characterized role in controlling stem elongation and plant growth

GENES INVOLVED IN AUXIN BIOSYNTHETIC PATHWAY

The Auxin Biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A Increases Grain Yield of Wheat¹

Controlling the major auxin biosynthetic pathway to manipulate auxin content could be a target for genetic engineering of crops with desired traits,

TRYPTOPHAN AMINOTRANSFERASE RELATED (TaTAR2.1) genes that function in the tryptophan-dependent pathway of **auxin biosynthesis**.

TaTAR2.1 is critical for wheat growth and also shows potential for genetic engineering to reach the aim of improving the grain yield of wheat.

Overexpressing TaTAR2.1-3A in Arabidopsis elevated auxin accumulation in the primary root tip, LR tip, LR primordia, and cotyledon and hypocotyl and increased primary root length, visible LR number, and shoot fresh weight under high- and low-N conditions.

GENES INVOLVED IN AUXIN BIOSYNTHETIC PATHWAY

ARF4 (Auxin response factor 4) in ROOTS:

Transcription repressor factor that participate in the auxin pathway, and affect auxin-responsive gene expression. It has been demonstrated its role in plant growth and development.

TaARF4 overexpression in Arabidopsis plants led to low GH3 gene expression and higher free indole-3-acetic acid (IAA) content. The high free IAA that inhibits apical dominance also reduced primary root length and plant height.

GENES INVOLVED IN AUXIN BIOSYNTHETIC PATHWAY

AUXIN REGULATOR FACTOR 15 (TaARF15)_ROOTS

TaARF15 is an ortholog of OsARF5, which regulates the development of rice at different stages (Indoliya et al., 2016).

TaARF15 was expressed in the roots, stems, and leaves of wheat seedling, and its expression levels significantly differed in response to exogenous auxin treatment.

Transgenic *Arabidopsis* containing *TaARF15-A.1* promoted growth of roots and leaves and was overexpressed after auxin treatment

Characterization and Expression Patterns of Auxin Response Factors in Wheat

ORIGINAL RESEARCH (NORMON: 10 September 2018

ontiers

Plant Science

Types of soil microbes/fonction	population growth with STUB-SET 1.2 L/ha
Mobilization of P in the soil	+90%
Filamentous bacteria Degradation of organic residues, forming humus. Also main source of antibiotics.	+81%
micro-fungus (all different kinds)	+70%
Cellulose degrading bacteria	+54%
Pedotrophic micro-flora	+47%
Bacteria fixing mineral nitrogen	+43%
Oligotrophic bacterias various species of bacteria living in low nutrient environment (very efficicent metabolism)	+28%
Ammonifying bacterias decompose N-rich waste into nitrites	+23%
Azotobacter (a free living bacteria fixing N from the air)	+2% -Maximum reached

STUB-SET ON BENEFICIAL MICROBES

National Academy of Agricultural Science Ukraine, 2015.

Stech Growth is natural with us.

Proven results for **Superior** harvests.

More marketable yield

+8.5 T/ha in 50-75mm (+22%)

Potatoes

Ireland, 2016-2021 Average 13 trials

More yield

+6 T/ha (+12%)

Increase production AND quality

STUB-SET + CROP-SET- IRELAND

30,00

20,00

10,00

0,00

- More total yield
- More marketable yield
- More uniformity
- Increase profitability
- Same amount of fertilizer and pesticides
- Reduce waste

List of trial plots, Ireland 2016-2021				
#1	2016		Co. Meath	Rooster
#2	2016		Co Meath	M. Piper
#3	2017		Co. Dublin	Rooster
#4	2018		Co. Meath	Rooster
#5	2018		Co. Dublin	Rooster
#6	2018		Co. Londonderry	Rooster
#7	2018		Co. Donegal	Rooster
#8	2018		Co. Meath	Rooster
#9	2018		Co. Wexford	
#10	2021		Co. Kildare	Rooster
#11	2021		Co. Louth	Rooster
#12	2021		Co. Meath	
#13	2021		Co. Dublin	Rooster

Onions Netherlands, 2020 replicated trial STUB-SET +CROP-SET

Return on Investment

5 to 1 (+950 EUR/ha)

More large onions

+2,8 T/ha in 60-80 mm (+10%)

Increase production AND profitability

The health of our soils is the key to **sustainable** agriculture.

Our objective **SUPPRESSIVE SOILS**

- Suppressive soils are characterised by the absence or low level of a disease in a crop susceptible to the pathogen causing the disease, the pathogen being present in the soil and the conditions being favourable for its development. *-Baker y Cook, 1974-*
- Ideal environment to optimise the use of our SOIL resources

soils SUPPRESSIVE

- Rich in available nutrients
- Biodiversity and a healthy microbiome
- Balanced soil structure

What are the benefits of healthy soil?

- Reduced impact of stress
- Increased production with fewer inputs.
- Reduced use of chemical fertilisers and synthetic plant protection products.
- Sustainability and profitability

"A nation that destroys its soil destroys itself". —Franklin Delano Roosevelt

PLANT PATHOGENS MULTIDETECTION

Plant pathogens multidetection

- Molecular analysis by real-time PCR (qPCR)
- FUNGI, BACTERIA AND VIRUSES
- SIMULTANEAOUS DETECTION of different pathonges (up to 45)
- Samples of soil, plant tissue, water and biostimulants
- Detection kits already available for 290 MICROORGANISMS
- Kits designed to detect the main pathogens of 17 GROUPS OF CROPS

ideagro

Plant pathogens multidetection

Fungi

Color legend: semi-quantitative quantification

High concentration Ct < 25.00	Medium concentration 25 < Ct < 30	Ct > 3	concentratio 30,00	n
Par	ámetro	Resultado	Ct	Procedimiento
Alternaria spp.		Presencia	25,26	Sonda específica qPCF
A. radicina		Ausencia	-	Sonda específica qPCF
Botrytis cinerea		Presencia	28,37	Sonda específica qPCF
Cylindrocarpon spp.		Ausencia	-	Sonda específica qPCF
Erysiphe polygoni		Ausencia	125	Sonda específica qPCR
Fusarium spp.		Presencia	21,94	Sonda específica qPCR
Fusarium equiseti		Presencia	25,97	Sonda especifica qPCR
Fusarium oxysporum		Presencia	28,83	Sonda específica qPCF
Fusarium solani		Presencia	18,06	Sonda específica qPCF
Geotrichum candidum		Ausencia	<u> </u>	Sonda específica qPCF
Itersonilia pastinaceae		Presencia	22,03	Sonda específica qPCF
Leveillula spp.		Ausencia	<u> </u>	Sonda específica qPCF
Macrophomina phaseol	ina	Ausencia	-	Sonda específica qPCF
Phytophthora spp.		Ausencia	100	Sonda específica qPCF
Pythium spp. (I)		Ausencia		Sonda específica qPCF
Pythium spp. (II)		Ausencia	5	Sonda específica qPCF
Rhizoctonia solani		Presencia	24,13	Sonda específica qPCF
Rhizopus stolonifer		Ausencia	1	Sonda específica qPCF
Sclerotinia sclerotiorum		Ausencia	1 2	Sonda específica qPCF
Sclerotium rolfsii		Ausencia	5	Sonda especifica qPCF
Verticillium spp.		Ausencia	-	Sonda específica qPCF

Bacteria	Parámetro	Resultado	Ct	Procedimiento	
	Candidatus liberibacter subsp. solanacearum	Presencia	24,48	Sonda específica qPCR	
	Erwinia carotovora subsp. atroseptica	Ausencia	-	Sonda específica qPCR	
	Erwinia carotovora subsp. carotovora	Ausencia	æ	Sonda específica qPCR	

an Altech company

Fungi and bacteria multidetection

	Microorganis	sm	
1	Alternaria spp.	21	Phytophthora cryptogea
2	Botrytis cinerea	22	Phytophthora infestans
3	Candidatus liberibacter subsp. solanacearum	23	Phytophthora parasitica
4	Clavibacter michiganensis subsp. michiganensis	24	Phytophthora spp.
5	Clavibacter michiganensis subsp. sepedonicus	25	Pseudomonas corrugata
6	Colletotrichum coccodes	26	Pseudomonas syringae pv. tomato
7	Colletotrichum gloeosporioides	27	Pyrenochaeta lycopersici (Raza 1)
8	Colletotrichum spp II	28	Pyrenochaeta lycopersici (Raza 2)
9	Corynespora cassiicola	29	Pythium spp. (I)
10	Didymella lycopersici	30	Pythium spp. (II)
11	Erwinia carotovora subsp. atroseptica	31	Ralstonia solanacearum
12	Erwinia carotovora subsp. carotovora	32	Rhizoctonia solani
13	Fusarium oxysporum	33	Sclerotinia minor
14	Fusarium oxysporum f. sp. lycopersici	34	Sclerotinia sclerotiorum
15	Fusarium oxysporum f. sp. radicis-lycopersici	35	Sclerotium rolfsii
16	Fusarium solani	36	Stemphylium spp.
17	Fusarium spp.	37	Streptomyces scabies
18	Helminthosporium solani	38	Thielaviopsis basicola
19	Olpidium brassicae	39	Verticillium albo-atrum
20	Phytophthora capsici	40	Verticillium dahliae

Safeguard Our Soils

#SoilHealthExperts

#SOS—Safeguard Our Soils: An Initiative for Soil Health and Sustainability

Soil health is key to sustainable agriculture, supporting food production, environmental preservation, and biodiversity.

However, around the globe soils face increasing challenges such as erosion, compaction, and nutrient loss, threatening agricultural productivity and the ecosystems that sustain life on Earth. Protecting and regenerating soil is critical to maintaining fertility and ensuring the production of healthy and nutritious food for current and future generations.

Blanet of Plenty

